Edição de genomas | Tecnologia está a ser usada para produzir trigo com menos glúten

pão
Créditos da imagem: Karim MANJRA/unsplash.com/@karim_manjra

Dada a importância do trigo na produção de pão e de uma infinidade de outros alimentos, investigadores de uma universidade norte-americana estão a usar a edição de genomas para produzir trigo com mais benefícios nutricionais.

O trigo é dos cereais mais presentes na dieta alimentar em todo o mundo. É fonte de mais de 20% das calorias consumidas, pelo não é difícil imaginar a sua extrema importância socioeconómica.

É por isso que uma equipa de investigadores da Universidade do Kansas, nos EUA, estão a usar tecnologias inovadoras como a edição de genomas para produzir trigo com benefícios adicionais, entre os quais níveis mais baixos de glúten.

Esta mais-valia permitiria que as pessoas sensíveis à proteína, em especial celíacas, pudessem comer pão e outros alimentos que incluem trigo na sua composição.

Saiba mais na parte 3 da série de vídeos “Inovação no Melhoramento de Plantas, da American Sees Trade Association e da CropLife International.

Clique aqui para ver também as partes 1 e 2 da mesma série.

Siga o CiB no Twitter, no Facebook e no LinkedIn. No CiB, comunicamos biotecnologia.

Anúncios

EUA e Canadá |Edição de genomas pode ser solução para doença que mata macieiras jovens?

apple-tree-356935_640
Imagem de Karsten Paulick por Pixabay 

No Canadá e Estados Unidos, os produtores de maçã estão a braços com uma doença fatal que inexplicavelmente afeta as macieiras jovens. Chamada de “declínio rápido e repentino de maçãs”, a doença ainda é um mistério.

É um mistério porque ninguém sabe como é que esta doença que impede que as macieiras cheguem à idade adulta pode ser combatida e se representa uma nova e séria ameaça a um setor de grande valia económica nestes países.

A seca e o frio severo podem ser causas subjacentes, mas não parecem justificar inteiramente a gravidade da situação, pelo que os investigadores estão a considerar outros fatores, nomeadamente pragas e agentes patogénicos.

Será que certos tipos de porta-enxertos ou a exposição a herbicidas podem tornar as árvores jovens mais suscetíveis a doenças ou stress? Esta é uma das questões levantadas pelos investigadores, que admitem que os métodos modernos de produção da maçã possam estar na origem do problema.

O que se sabe é que o declínio rápido das macieiras é mais comum em pomares densamente plantados: “As árvores muito cheias têm raízes superficiais que, ao competirem por nutrientes, tornam-se mais vulneráveis ​​à seca. Acresce que os pomares densamente plantados estão a proliferar nos EUA e Canadá porque o seu manuseio é mais fácil e eficiente.

Sabendo-se já que a edição de genomas permite o melhoramento de plantas em diversos aspetos – por exemplo, tornando-as resistentes a situações de seca ou de frio extremo – e a redução substancial da necessidade de agroquímicos, muitos investigadores acreditam que tecnologias como o CRISPR-Cas 9 podem ser a solução para o “declínio rápido” das maçãs.

Siga o CiB no Twitter, no Facebook e no LinkedIn. No CiB, comunicamos biotecnologia.

Edição de genoma | O que é o CRISPR?

crisprcrop2224567
Image: R&D Magazine

De vez em quando ouvimos notícias sobre a edição genética, mas o que é isso exatamente, em que consiste, para que serve e como funciona?

Com a edição de genoma, os cientistas podem fazer alterações precisas e permanentes nos quatros blocos moleculares do DNA dos seres vivos. Embora já existam vários métodos para realizar este procedimento, o mais discutido atualmente é o CRISPR / Cas9. Este vídeo de um episódio de Tech-x-planations explica como é que esta ferramenta funciona.

Siga o CiB no Twitter, no Facebook e no LinkedIn

TEDx | Transgénicos: Heróis ou Vilões?

Sabia que um tomate cherry tem mais tecnologia do que um iPhone? Nesta comunicação TEDx, de José Miguel Mulet, descubra outra perspetiva sobre alimentos geneticamente modificados (GM), que tanta controvérsia geram. O investigador discute o conceito de alimentos “naturais” e conta a história muito antiga do melhoramento genético de plantas que todos os dias incluímos nas nossas refeições, como a cenoura, o tomate, a batata, entre outros. Abre ainda o véu sobre as potencialidades de uma nova tecnologia: o CRISPR-cas9.

Na sua apresentação, além da cenoura, do tomate e da batata,o investigador espanhol e Professor da Universidade Politécnica de Valência, José Miguel Mulet refere também produtos geneticamente modificados do nosso dia-a-dia, tais como: notas de euro, roupa, cotonetes, comprimidos, insulina, detergentes de roupa (produzidos com enzimas com origem na engenharia genética). Desmonta abordagens que disseminam desinformação passada pelos movimentos anti-OGM.

O divulgador de ciência explica que a tecnologia dos Organismos Geneticamente Modificados não é a tecnologia mais recente, mas a penúltima. A mais recente é o CRISPR-cas9. Para saber em que consiste, visualize o vídeo. No final, José Miguel Mulet declara que está muito tranquilo e que come alimentos GM sem medo.

José Miguel Mulet é Investigador e Professor da Universidade Politécnica de Valência (Espanha), na área de química, biologia molecular e biotecnologia. A sua investigação dedica-se ao desenvolvimento de plantas resistentes à seca. É divulgador de ciência em áreas como biotecnologia e alimentação, tendo publicado vários livros como “Transgénicos sin Miedo”, “Comer sin Miedo”, entre outros.

Visione o vídeo TEDx Transgénicos: Heróis ou vilões? e visite o blogue de José Miguel Mulet Tomates con genes.

http://jmmulet.naukas.com/2018/03/28/transgenicos-en-tedxupv/

Siga o CiB no Twitter @cibpt e no Facebook @cib.portugal.

Biotecnologia | Estamos rodeados dela e não sabemos


Créditos da imagem: Shutterstock

Há quem acredite que a alimentação do futuro é a biotecnologia alimentar. Que a carne que iremos comer não será de animais, que o leite que iremos beber não será das vacas, que as claras de ovos serão produzidas sem galinhas. A verdade é que já há empresas a trabalhar para que isso seja possível. O que é uma realidade velha é o uso da biotecnologia na produção de medicamentos e de alimentos e, mais recentemente, na engenharia genética, permitindo editar, corrigir e alterar o genoma de qualquer célula. A biotecnologia está praticamente em tudo o que comemos, vestimos e usamos no dia-a-dia.

Há muito que se fala em biotecnologia, mas quantos de nós sabem realmente o que significa? Como o próprio nome indica, é a tecnologia ao serviço da biologia. E isso diz-nos o quê? Muito pouco, em especial para quem está fora desta área de investigação que envolve várias especialidades.

A biotecnologia é uma ciência multidisciplinar e consiste em qualquer aplicação tecnológica que utilize organismos vivos ou parte deles para fabricar ou modificar produtos ou processos é que ajudem a melhorar a nossa vida.

As áreas da biotecnologia com maior impacto em Portugal são as da biotecnologia farmacêutica e industrial. A farmacêutica está ligada principalmente ao desenvolvimento e comercialização de biofármacos, vacinas recombinantes e métodos de diagnóstico, permitindo oferecer tratamento para um alargado leque de doenças (incluindo certos tipos de cancro ou vacinas inovadoras) e detetar rapidamente agentes patogénicos. A industrial engloba as aplicações da biotecnologia em diferentes indústrias como a têxtil, pasta de papel, alimentar (nomeadamente no processamento de lacticínios, açúcar e produção de ingredientes), plásticos, químicos e biocombustíveis (essencialmente bio-etanol). Uma parte importante deste setor é a produção de enzimas (usadas, por exemplo, nos detergentes).

Nos países mais desenvolvidos, a biotecnologia é um dos setores com uma maior previsão de crescimento a médio prazo, pois é considerada a ciência chave do século XXI e promete progressos revolucionários e novas terapias. A biotecnologia aplicada à medicina é uma das áreas de maior crescimento do conhecimento humano e está relacionada com o desenvolvimento de sistemas terapêuticos emergentes como a terapia genética, a terapia celular ou a medicina regenerativa.  

Informações mais detalhadas aqui.

Siga o CiB no Twitter, Facebook e no Linkedin

Livro | Genética para todos

Chega esta semana às livrarias portuguesas o livro que retrata e explica, de uma forma que todos entendem, os avanços científicos desde a descodificação do genoma humano, em 2003, até aos nossos dias. Genética para Todos”(Gradiva) foi escrito pela geneticista Heloísa G. Santos e pelo jurista André Dias Pereira. Publicamos aqui um curto excerto.

“… A edição do genoma é uma nova técnica de manipulação programada do genoma, através do sistema CRISPR/Cas9, que pode ser utilizada em vários domínios da ciência, incluindo a terapia génica de doenças monogénicas. Em 2012, Jennifer Doudna e Emanuelle Charpentier, duas investigadoras da Universidade de Berkeley (Califórnia), verificaram e informaram a comunidade científica de que se podia utilizar em células eucariotas (com núcleo, como as nossas) um mecanismo imunológico identificado em bactérias pelo qual estas se tornam capazes de se libertar dos vírus quando estes se introduzem no seu genoma.

Este novo instrumento é constituído por uma enzima bacteriana (Cas9) que corta as duas cadeias da molécula de ADN como uma tesoura e por um segmento de ARN (CRISPR) que actua como guia, identificando o local onde é necessário que o genoma seja alterado e onde será colocada a nova sequência do ADN. O ARN é obtido através de firmas comerciais. A forma como esta cirurgia molecular é realizada (não utilizando um vírus como vector) torna-a menos arriscada do que as tentativas anteriores de manipulação do genoma… ”

Para estimular o interesse pela leitura, leia um longo excerto de Genética para Todos que o jornal Público, em jeito de pré-publicação, traz na sua edição de hoje.

Siga o CiB no Twitter @cibpt e no Facebook @cib.portugal.

Edição de genoma | CRISPR-Cas9 aumenta eficácia da quimioterapia contra o cancro do pulmão

Investigadores nos EUA descobriram que a tecnologia de edição de genoma CRISPR-Cas9 pode ser usada para restaurar a eficácia das quimioterapias de primeira linha contra o cancro do pulmão. Como? Através da destruição de um gene tumoral que atua como um regulador mestre dos genes envolvidos no desenvolvimento de resistência.

Uma equipa de investigadores do Gene Editing Institute, no estado norte-americano de Delaware, usou a tecnologia de edição genética CRISPR-Cas9 para desativar um gene tumoral em células do pulmão cultivadas em laboratório. Os testes mostraram que as células cancerígenas foram menos capazes de proliferar em cultura e foram mais sensíveis aos agentes quimioterápicos (incluindo cisplatina e carboplatina). E quando transplantadas em ratos, as células cancerígenas modificadas cresceram mais lentamente do que as células cancerígenas não modificadas.

Os cientistas observaram também que o tumor parou de crescer durante dezasseis dias em animais recetores, tratados com diferentes formas de quimioterapia, e que houve uma diminuição considerável no volume do tumor. Num artigo publicado na revista Molecular Therapy Oncolytics, Eric B. Kmiec, investigador principal do estudo, afirmou que o objetivo da investigação “foi saber se o sistema CRISPR pode ser usado com quimioterapia de uma forma segura e acessível para os pacientes que não estão a responder aos tratamentos.”

A quimioterapia continua a ser o principal tratamento para o cancro de pulmão. O problema é que, na maioria dos casos, os tumores tornam-se resistentes às drogas (agentes quimioterápicos). Estudos anteriores dizem que o desenvolvimento de resistência aos agentes quimioterápicos está associado à regulação positiva de diferentes genes envolvidos no transporte de drogas para fora das células. Um desses genes, eritróide 2 (NRF2), é considerado um regulador mestre de outros genes envolvidos na capacidade de resposta das células ao stresse oxidativo e/ou eletrofílico.  

Com os resultados do estudo realizado por Eric B. Kmiec e a sua equipa de investigadores deu-se mais um importante passo na descoberta dos benefícios da edição genética para a saúde.

Saiba mais neste artigo, em inglês, da Genetic Engineering & Biotecnology News.

Siga o CiB no Twitter @cibpt e no Facebook @cib.portugal

CRISPR | A tecnologia de edição de genoma que está a conquistar cada vez mais pessoas

O título tem origem numa afirmação do CEO e co-fundador da Synthego, uma empresa norte-americana que produz software e kits de RNA que abrem caminho a novas descobertas científicas na área da edição de genoma e aceleram a sua aplicação terapêutica. Diz Paul Dabrowski que as pessoas estão a transitar da fase em que querem aprender sobre o CRISPR-Cas9 para a fase em que querem usá-lo.” Saiba porquê.

Há um ano e meio, Paul Dabrowski, CEO e co-fundador da Synthego, estimava que 33% das pessoas que poderiam utilizar o CRISPR-Cas9 estavam a usá-lo. Atualmente, pensa, esse valor estará “mais perto dos 40%, graças a uma mudança de mentalidade.”

Sendo uma das mais recentes e inovadores tecnologias de edição de genoma, o CRISPR-Cas9 está a tornar-se uma ferramenta regular para um universo de utilizadores cada vez mais amplo, de diferentes áreas de atividade, e está a começar a ser aplicada no desenvolvimento de terapias, o que é uma boa notícia para a Synthego, já que parte desta mudança de mentalidade, acredita, foi “impulsionada pela empresa”.

Mas Dabrowski não se contenta com o recurso cada vez mais significativo e abrangente do CRISPR. A sua maior ambição é que a tecnologia não se fique pela medicina genética avançada e transite o mais rapidamente possível para a área clínica, para que a edição de genoma possa, realmente, curar doenças de origem genética.

As primeiras terapias genéticas e celulares estão a chegar só agora ao mercado americano, mas a preços impossíveis de pagar, quer pelos pacientes, quer pelos contribuintes: “A maioria custa entre 800 mil dólares [cerca de 700 mil euros] e 1,5 milhões de dólares [um milhão e 315 mil euros]. Dabrowski acredita que seria possível curar doenças genéticas por 10 mil dólares [8.700 euros] por paciente, desde que se procedesse a alterações radicais no modus operandi em áreas como a I&D, a indústria e a comercialização. Nos Estados Unidos e no resto do mundo, acrescentaríamos nós.

Mais informação neste artigo, em inglês, da Genetic Engineering & Biotecnology News.

Siga o CiB no Twitter @cibpt e no Facebook @cib.portugal

OGM | Gene OsBIG é crucial para o sucesso da transplantação da planta de arroz

Créditos da imagem: © 2015 Masoud Rezaeipoor

A planta do arroz tem um gene designado OsBIG que é vital para a sua sobrevivência e desenvolvimento normal. Em situação de carência desse gene, a planta desenvolve várias deficiências e não resiste à muda. Saiba o que mais descobriram investigadores chineses da Universidade de Wuhan, num estudo que pretendeu caraterizar a estrutura genética do OsBIG e saber qual a sua função.

Já se sabia que na planta do arroz existe um gene (OsBIG) semelhante ao gene AtBIG da Arabidopsis – um género pertencente à família das plantas herbáceas Brassicaceae, a que também pertencem as couves e a mostarda -, que codifica uma proteína necessária para o transporte de auxinas e altera a estrutura da planta, adaptando-a aos estímulos ambientais. Mas, apesar de ser conhecida as semelhanças entre os dois genes, ainda não era conhecida a função do OsBIG. Até agora.

Num estudo realizado por investigadores da Universidade de Wuhan, na China, para caracterizar a estrutura genética e saber qual a função do gene da planta do arroz, a análise sequencial e filogénica mostrou que as versões do OsBIG têm uma alta conservação de aminoácidos em vários domínios e em diferentes espécies.

No âmbito de uma análise mais aprofundada, os investigadores usaram a edição de genoma (concretamente, o sistema CRISPR-Cas9) para desenvolver plantas de arroz geneticamente modificadas (GM), interrompendo a expressão do gene OsBIG. Resultado: obtiveram plantas transgénicas com altos níveis de morte celular, um aumento da perda de eletrólitos, peroxidação lipídica (degradação oxidativa dos lípidos) na membrana e redução do teor de clorofila, o que provavelmente, acreditam, explica a inviabilidade das mudas (transplantação) das plantas.

Já as plantas de tipo selvagem analisadas apresentaram várias deficiências metabólicas e hormonais – incluindo ribossomos, replicação do DNA, fotossíntese e metabolismo da clorofila – como resultado da carência do gene OsBIG.

Os investigadores concluíram que o gene OsBIG é vital para o crescimento normal das plantas de arroz.

Leia o estudo, em inglês, e um artigo sobre o tema, em espanhol, na revista da Fundación Antama.

Siga o CiB no Twitter @cibpt e no Facebook @cib.portugal

Vídeo | Biólogo explica CRISPR a pessoas com 5 níveis diferentes de conhecimento

Biologist explains CRISPR - 5 people

VÍDEO
Biólogo explica CRISPR a pessoas
com 5 níveis diferentes de conhecimento

O Biólogo Neville Sanjana conversa com cinco pessoas com níveis de conhecimento diferente (desde criança com 7 anos a especialista) sobre a técnica de edição de genoma CRISPR.

Neville Sanjana é investigador da Universidade de Nova Iorque e do Centro de Genoma de Nova Iorque.

A Wired divulga informação sobre tecnologia e inovação e de que forma influenciam o dia-a-dia da vida das pessoas, desde a cultura, os negócios, a ciência, a industria e o design.